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Tangent spaces in non-linear dynamical systems are state dependent. Hence, it is generally
not possible to exactly represent a non-linear dynamical system by a linear one over "nite
segments of the evolving trajectories in the phase space. It is known from the well-known
theorem of Hartman and Grobman that a non-linear oscillator admits a linearization within
a neighbourhood of any hyperbolic "xed point in the sense that the linearized #ow bears
a topological conjugacy to the non-linear #ow within the same neighbourhood. This
linearization is based on the construction of the tangent space to the non-linear vector "eld
at the hyperbolic "xed point. Even though useful in bifurcation analysis, such a linearization
procedure cannot be successfully applied to identically simulate the non-linear #ow over the
phase space because the functional form of the topological conjugacy is not known. With
this in mind, an implicit approach to local linearization is evolved in this paper such that the
tangent space of the linearized equation transversally intersects the tangent space to the
non-linear dynamical system at that point in the state space where the solution vector is
desired. Several numerical schemes for the implementation of this implicit and local
linearization procedure are explored and illustrated with several numerical results. It is
shown that the locally transversal linearization (LTL) procedure "nally reduces the given set
of non-linear ordinary di!erential equations (ODEs) to a set of transcendental algebraic
equations with the desired solution vector as the unknown. The variables in the state space
appear as unknown quantities in this approach. Finally, one arrives at non-linear Poincare
maps for the non-linear oscillator. In this scheme, the characteristic time interval for the map
is arbitrarily "xed. The methodology is found to be quite versatile for handling non-linear
dynamical systems. In particular, it is veri"ed that these schemes are capable of accurately
predicting a wide spectrum of typically non-linear response characteristics, such as limit
cycles, multi-periodicity, almost periodicity and chaos. For a limited class of response
patterns, the principle proposed has another advantage in that the time step for integrating
the non-linear ODEs need not be small. An improved and a more general higher order
version of the LTL method is also considered. A distinct advantage of this higher version is
in its improved ability for a closer simulation of phase-dependent time histories where
a di!erence in the initial conditions leads to a phase di!erence in the realized solution
history. ( 2001 Academic Press
1. INTRODUCTION

In the literature, there exists a vast array of approximate analytical and numerical tools for
analyses and direct integrations of non-linear dynamical systems. However, the diverse
response patterns that a non-linear oscillator can potentially display is truly amazing and
no known analytical technique is versatile enough to successfully predict all these
complicated dynamical features. Among the available and popularly used analytical
techniques, mention may be made of the classical Krylov}Bogoliubov averaging technique
22-460X/01/140653#27 $35.00/0 ( 2001 Academic Press
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[1], the secular perturbation theory [2, 3], the method of multiple scales [4, 5] an
incremental harmonic balancing method [6], the homotopy method [7], a process analysis
method [8], etc. These techniques are often observed to be too approximate for the
prediction of quasi-periodic, limit-periodic and aperiodic (such as chaotic) orbits.
Numerical integration methods, even though more versatile, are sometimes too sensitive to
the choice of time-step size to be reliable (see references [9, 10]). A numeric-analytical
phase-space linearization (PSL) method, proposed recently by Iyengar and Roy [11, 12] for
the response analysis of a class of non-linear oscillators, has been found to correctly predict
complicated dynamical trajectories arising out of a locally diverging or repelling nature of
nearby trajectories. An advantage of this numeric-analytical scheme lies in the fact that it
e!ectively combines the versatility of numerical schemes with the elegance and
computational ease of analytical schemes. The essence of the PSL method is to replace
a continuous non-linear vector "eld by a countable set of suitably constructed conditionally
linear ones. Each of these conditionally linear "elds is, in turn, valid over a short segment of
the evolving trajectory projected on the phase space or equivalently on the time axis. It has
further been pointed out that the procedure of such a local replacement of non-linear vector
"elds by linear ones is not unique. With suitable modi"cations, the explicit version of the
PSL scheme has been applied to both deterministically and/or stochastically forced
non-linear dynamical systems by Roy [13] and Iyengar and Roy [14]. It has been noted
that this method has the subtlety to detect local instabilities in non-linear #ows. Hence, it
can correctly predict di!erent types of non-linear phase #ow patterns, including the
quasi-periodic and chaotic ones, irrespective of their complexity.

The limited numerical success of the PSL method notwithstanding, a suitable theoretical
foundation of the philosophy of the method is essential to correctly understand the precise
relationship between the conditionally linear #ow and the non-linear #ow over a given time
interval. Moreover, since the topological understanding of a non-linear #ow around a given
point on an evolving orbit is via the construction of a linear tangent space (see references
[15, 16]), the linearized and non-linear #ow patterns have to be related in terms of their
respective tangent spaces. It is known that the tangent space of a system of non-linear
ODEs is a function of the state variables themselves in contrast to the state-independent
tangent spaces of a linear system. Thus, it is too ambitious to derive a time-invariant linear
dynamical system whose evolution will, in general, precisely match that of a given
non-linear system over any "nite time interval. It may, however, be pertinent to ask if it is
possible to construct a conditionally time-invariant and linear vector "eld over a given time
interval such that the resulting #ow is made to transversally intersect the non-linear #ow at
the right boundary of the time interval. The present paper may be considered to be an
exploration of the possibilities for constructing such conditional and transversal linear
systems. In particular, it is shown that considerations of transversality between tangent
spaces of the linearized #ow and the non-linear #ow lead to a new implicit form of local
linearization. This novel technique, referred to as the &&locally transversal linearization''
(LTL) method, strives to exactly satisfy the governing non-linear ordinary di!erential
equations (ODEs) only pointwise at a countable number of unknown solution co-ordinates.
In the present study, the entire solution class of non-linear oscillators has been broadly
categorized into phase-dependent and phase-independent solutions. The more frequently
observed phase-dependent solution, for instance, is the one where two distinct initial
conditions lead to two topologically identical orbits (in the associated phase space), whose
solutions histories are only separated by a phase di!erence. It is next argued that the LTL
method is very accurately suited, irrespective of the chosen time step, towards obtaining
solution points of non-linear oscillators in the phase-independent regime and not so much
in the phase-dependent regime. However, a simple error analysis shows that even during
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phase-dependent #ows, one can put a bound on the absolute value of the error in terms of
the chosen time step. In order to have an even more e!ective LTL-based scheme in the
phase-dependent regime, a higher order LTL method is also proposed and this enables
a more accurate pathwise (and not just pointwise) simulation of non-linear trajectories.
Practical implementations of these methods are further illustrated with two workhorse
dynamical systems in the literature, namely the Du$ng and Lorenz oscillators. In
particular, numerical implementations for the Lorenz system have been e!ected in a manner
suitable for being adapted to any non-linear dynamical system irrespective of its
dimensionality.

2. THE LTL METHODOLOGY

To begin with, consider a non-linear oscillator of the following state-space form:

xR "A(t)x#Q(x, t)#f (t)"<(x, t) , (1)

where x3Rn, A(t) is an n]n state-independent coe$cient matrix associated with the linear
terms, f (t) :¹LRPRn is the external (non-parametric) force vector, Q (x, t) :¹]RnPRn

is that part of the vector "eld which is non-linear in x, and<(x, t) stands for the entire vector
"eld. Presently, it is assumed that the elements of Q(x, t), f (t) and A (t) are Ck, k3Z`

continuous in x and t with k*1. The initial condition vector to integrate equation (1) is
denoted as x

0
"x(t

0
). Now let the time axis be ordered such that t

0
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1
(

t
2
(2(t

i
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i
"t

i
!t

i~1
, where i3Z`. The issue now is that of replacing the

non-linear system of ODEs (1) by a suitably chosen set of n linear system of ODEs, wherein
the ith linear system should, in a sense, &closely' represent the non-linear #ow over the ith
time interval ¹

i
"(t

i~1
, t

i
]. Let /

i
(.) and /M

t, i
( . ), respectively, denote the vector solution

#ows of the non-linear system and the ith linearized system of ODEs. In the earlier studies
by Roy [12] and Iyengar and Roy [13] for the development of the PSL method, the goal
was set as to derive the ith linearized system of ODEs in such a way that /M

t, i
( . ),

approximates /
t
( . ) as closely as possible uniformly over the semi-closed interval ¹

i
.

Unfortunately, the procedures to derive these linearized systems have been non-unique and
validations in the form of numerical simulations have only been provided so far. A di!erent
and possibly more rigorous point of view is however adopted in the present study. Thus the
objective, to begin with, is not to derive the linearized ODEs so as to remain everywhere
&close' to the non-linear #ow, but to have the ODEs in such a manner that the given
non-linear system is exactly satis"ed at a countable number of points along the time axis or,
equivalently, at a countable number of cross-sections, constructed transversal to the
evolving #ow. To use a more rigorous setting, let /

t
(x) be evolving on a compact manifold

M, such that

/
t
:M]RPM (2)

is a Ck #ow on M. Thus, for any choice of t, /
t
(x) is a Ck di!eomorphism MPM and the

following simple relations hold:

/
t0
"/

0
"id

M
, /

ti~1
o/

hi
"/

ti
(3)

provided that the vector "eld is autonomous (note that an n-dimensional non-autonomous
vector "eld can be posed as an (n#1)-dimensional autonomous one). The set of all such Ck

di!eomorphisms, /
t
(x), under the operation of composition &o' form a group, G

(
. Now the
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second of equations (3) may be interpreted in terms of two di!erent group actions [16].
While the "rst is the R-action de"ned as

RPG
(
: tP/

t
(4a)

the second is known as the Z-action:

ZPG
(
: jP/

tj
. (4b)

Here, Z denotes the set of all integers. Thus, the present objective may be stated as to derive
a set of linear di!erential systems to obtain the same Z-action. At this stage, it should be
apparent that these can at best be only conditionally linear, being conditioned upon their
exactly satisfying the given non-linear di!erential system at a discrete number of time
points, S"Mt

i
Di"1, 2, 3,2N, but not necessarily elsewhere. This, in other words, implies

that the conditionally linear #ows have to transversally intersect the non-linear #ow at
least at the cross-sections sampled stroboscopically at every time point in S. For
a one-dimensional dynamical system (n"1), a pictorial representation of the scenario is as
shown in Figure 1. More precisely, if the R-action of the derived ith linear #ow is such that
/M
t, i

:MM
i
]RPMM

i
is a di!eomorphism, then there will be an associated di!eomorphic

Z-action, fM
i
, relating the two successive cross-sections of intersections, p

i~1
"Mx

i~1
, t

i~1
N

and p
i
"Mx

i
, t

i
N. At this stage, it is worth noting that fM

i
may be interpreted as a smooth map

from MM
i

to M, since p
i~1

and p
i

belong to both M and MM
i
. Thus, from the weak

transversality theorem (see reference [17]), it follows that such mappings which are
transversal to M at a given section of intersection, p

i
, form an open and everywhere dense

set in the space of smooth maps fM
i
: MPMM

i
. In other words, this implies that the procedures

to derive the conditionally linear system of ODEs are non-unique and uncountably many.
Here a convenient and easily adaptable methodology of linearization using LTL is "rst
depicted.

For ease of implementation, it is presently decided to derive the locally linearized system
such that it is also n-dimensional and is obtainable from the given non-linear system with
simple and least alterations. Towards this, the linearized equation (with constant
coe$cients) is constructed by simply recasting the non-linear equation (1) over ¹

i
as

xNQ "A(t
i
)xN #B (x

i
, t

i
)xN #f (t)"<M (xN , t) , (5a)

where

Q (x, t)"B(x, t)x (5b)
Figure 1. A schematic representation of the relationship between the non-linear and conditionally linearized
#ows.
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provided that the vector function Q is separable with B (x, t) "nite in equation (5b). Equation
(5a) is conditionally linear with constant coe$cients given the precise value of the still
unknown solution vector x

i
"x (t

i
). Since equation (5a) is postulated to satisfy equation (1)

at both the ends of the time segment ¹
i
, the initial condition vector to equation (5a) is

x
i~1

"x (t
i~1

) . At this stage it will be useful to construct the locally linearized variational
equation associated with equation (1) based on the point x

i
3M as follows:

yR "D
x/xi
<(x, t)y"A(t)y#D

x/xi
Q (x, t)y , (6)

where &D' stands for the vector derivative or the Jacobian operator. It is observed that
D

xi
<(x, t) is the usual tangent map ¹

xi
< based at the point x

i
3M with the usual Riemann

structure of inner product norms [15]. On the other hand, since equation (5a) is
conditionally linear, the corresponding variational equation at x

i
is obtainable by using the

same vector "eld without the external forcing term, f (t). Thus, the variational equation is

yNQ "A (t
i
)yN #B (x

i
, t

i
)yN "D

xi
<M (xN , t) . (7)

Here D
xi
<M is the tangent space ¹

xi
<M at x

i
3M. In fact, the unknown point, x

i
, being a point

of transversal intersection of the #ows /
i
and /M

i
, belongs to MWMM , a condition that can be

viewed as a constraint on the constructed linearized #ow. Consequently, a suitable
constraint equation needs to be framed. Towards this, the solution of the linear system of
equations (5a) is explicitly written down as

xN (t)"t (x
i
, t, t

i~1
)Gxi~1

#P
i)ti

ti~1

t~1 (x
i
, s, t

i~1
) f (s) dsH , (8)

where t (x
i
, t, t

i~1
) is the fundamental solution matrix. While the "rst term on the

right-hand side of equation (8) represents the complementary solution, the second one
stands for the particular integral due to the external forcing function, f (t). Equation (8) may
now be di!erentiated once to yield

xNQ (t)"tQ (x
i
, t, t

i~1
)x

i~1
#t~1 (x

i
, t, t

i~1
) fQ (t)#tQ ~1(x

i
, t, t

i~1
) f (t) . (9)

The constraint condition, i.e., x
i
3MWMM

i
, may be considered equivalent to the identify

xN (t
i
)"x(t

i
)"x

i
. (10)

In order to satisfy the above identity, xN (t) and xNQ (t) from equations (9) and (10) are
substituted into the non-linear equation (1) for x (t) and xR (t), respectively, at t"t

i
. This

leads to the following n algebraic and non-linear (transcendental) equations for the
unknown vector x

i
:

k (x
i
, t

i
, t

i~1
)"0, (11a)

where the vector function k is given by

k"tQ (x
i
, t

i
, t

i~1
)x

i~1
#t~1(x

i
, t

i
, t

i~1
) fQ (t

i
)#tQ ~1 (x

i
, t

i
, t

i~1
) f (t

i
)!A(t

i
)xN (t

i
)

!Q(x
i
, t

i
)!f (t

i
) . (11b)

Attention is now focussed on the analytical expressions for the two tangent maps, ¹
xi
< and

¹
xi
<M , given, respectively, by equations (6) and (7). It is clear that ¹

xi
< is transversal to ¹

xi
<M
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for almost all x
i
except at a countable number of points satisfying the following n non-linear

coupled algebraic equations:

D
x
Q(x

i
, t

i
)x

i
"B(x

i
, t

i
) , (12)

where only real roots, x
i
, of the above equation are of interest. Consider, as a simple

example, a one-dimensional (n"1) case with Q(x, t)"x3. In this case, equation (12)
reduces to

2x3
i
"0. (13)

In other words, x
i
"0 is the only point on the real line, R, where the original and

reconstructed tangent spaces, ¹
xi
< and ¹

xi
<M , fail to be transversal. Thus, if the solutions,

x
i

of equations (11) and (12) coincide, then the conditionally linear #ow /M
t

does not
transversally intersect the non-linear #ow /

t
at p

i
, thereby rendering the LTL method

ine!ective. An obvious way out is to translate t
i
a little forward or backward such that

x
i
changes away from its singular value.

3. PHASE-DEPENDENT AND PHASE-INDEPENDENT SOLUTIONS

Non-linear response histories may be broadly classi"ed based on their sensitivity to the
chosen initial conditions. Taking, for instance, a couple of distinct initial conditions,
the resulting time histories may be de"ned to be phase independent if they become
asymptotically identical tP#R. If more than one and a countably "nite number of
attracting limit sets exist, then the above de"nition still holds provided one restricts to the
chosen initial conditions within the basin of attraction of only one of the limit sets.
A phase-dependent solution, on the other hand, occurs in a manner so that any two such
trajectories, originating from two di!erent initial conditions, di!er only by a constant or
time-dependent phase along the time axis. The simplest example of a phase-independent
solution is a sink, which is an asymptotically stable "xed point. In fact, for non-linear
oscillators externally forced by a periodic excitation, the one-periodic solution is mostly
phase independent. Multi-periodic, quasi-periodic and chaotic solutions are, on the other
hand, phase dependent. If the oscillator passes into the phase-dependent regime, then for
a given set of p3Z` di!erent initial conditions, a bundle of p distinct solutions will exist.
Now consider the projections R

i
: M]RPM Dt"t

i
, i"0, 1, 2, 32. If R

0
LM consists of

a countable in"nity of initial conditions, i.e., R
0
"Mx(k)

0
Dk"1, 2,2,RN, then R

i
LM, will

also consist of a countable in"nity of distinct points, Mx(k)
i

Dk"1, 2, 3,2,RN. In reality, the
maps f i"R

0
#R

i
are di!eomorphic for every i and for a su$ciently small h

i
"t

i
!t

i~1
,

since xk
0

has to get transformed to x(k)
i

for any k. The di!eomorphisms, f i, may readily be
generated from a repeated application of the LTL procedure using equations (8) and (11a).
It may now be noted that equation (11a) which is supposed to search for the correct
solution, x(k)

i
at t"t

i
, has the initial condition x(k)

i~1
as a parameter. However, due to a lack

of a su$ciently accurate path information in the LTL procedure described so far, the
conditionally linear equation (5a), based at the initial condition x(k)

i~1
, attempts to

transversally intersect the nearest available non-linear trajectory at t"t
i

among the
possible bundle of trajectories. In other words, given the initial condition, x(k)

i~1
, and more

than one possible solutions Mx(l)
i

D l"1, 2, 32N at t"t
i
, the solution vector, which is

actually found, is not necessarily the desired one, i.e., xk
i
. In fact, the found solution x(l)

i
in

the solution set Mx(l)
i

D l"1, 2, 32N is closest, in the Euclidean sense, to the initial guess that
the user provides for the solution vector. A graphical representation of the scenario for the
simplest one-dimensional case (n"1) is provided in Figure 2(a). Here solid lines indicate



Figure 2. (a) A possible source of error in the LTL method during the transient regime: **, exact;
} ) } )} ) } ), LTL; (b) unique intersections in the phase-independent regime.
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"ve of the evolving non-linear trajectories over the time segment h
i
. The dashed line, on

the other hand, is the conditionally linear trajectory based at the initial condition x(3)
i~1

. Let
the initial guess for x

i
be x(3)

i~1
itself. Then, as is clear from the "gure, the closest zero of the

transcendental function k in equation (11a) is x(2)
i

and not x(3)
i

, which is the desired one. It is
also apparent from this "gure that a higher accuracy for phase-dependent trajectories in the
LTL method should demand a smaller time-step size. It is, however, important to note that
in the phase-independent regime, the LTL method yields an exact mapping relating x

i~1
to

x
i

irrespective of the chosen time step as the steady state is approached. A simple
one-dimensional illustration is provided in Figure 2(b), wherein time histories of three
phase-independent trajectories (solid lines), x(1) (t), x(2) (t) and x(3) (t) evolving, respectively,
with initial conditions x(1)

0
, x(2)

0
and x(3)

0
, are shown schematically. In the same "gure, the

dotted line, denoted by xN (t), represent the LTL solution whose initial condition is set as
xN
0
"x(2)

0
. Since in the steady state (say, for t*t

5
), one virtually has the equality

x(1) (t)"x(2) (t)"x(3) (t), the LTL-based solution xN (t) should have unique intersection
points with the original #ow irrespective of the chosen time-step size.

4. ERROR ESTIMATES

While the LTL method, developed thus far, fails to make proper use of the available
information on initial conditions in the transient regime, it is of interest to have an estimate
of the error order for a better understanding of the procedure. In contrast, the LTL method
yields an exact mapping relating x

i~1
to x

i
during phase independence. The importance of
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an error estimate in this case, however, is to have an understanding of the extent to which
the linearized #ow, as constructed via LTL, falls away from the non-linear #ow in between
the co-ordinates x

i~1
and x

i
. Let the vector-valued signed error be de"ned as

E (t)"x(t)!xN (t) . (14)

Now towards estimating the error measure, a system of ODEs for E (t) may be readily
obtained by subtracting equation (5a) from equation (1):

EQ "A (t)E#B (x, t)x!B (x
i
, t

i
)xN . (15)

The above equation is valid only over the interval ¹
i
. To keep track of the initial condition,

say x j
0
, it is convenient to replace x

i
in equation (15) by x j

i
. By adding and substituting

B(xj
i
, t

i
), equation (15) may be recast as

EQ "[A(t)#B (x j
i
, t

i
)]E#[B (x, t)!B (xj

i
, t

i
)]x. (16)

It is now assumed that the 1-jet, j1
x
"Mx (t), D

t
(x (t))hN [15] of the process x(t) exists and is

bounded for all realizable vector values of x(t). For notational convenience, D
t
(x) is denoted

as xR (t) in what follows.
Phase-dependent regime: Given x j

i
to be the solution obtained via LTL, the initial

condition will be xk
i~1

where kOj. Thus, for t
i~1

(t)t
i
, one has, via a forward Taylor

expansion about xk
i~1

,

x (t)!x j
i
"(xk

i~1
!xj

i
)!xR k

i~1
(t!t

i~1
)#O(t!t

i~1
)2. (17)

It is important to note here that the above expansion constitutes a germ [15] to the original
trajectory through xk

i~1
, which is di!erent form the trajectory through x j

i
. Substituting

equation (17) into equation (15) followed by integration leads to

E(t)"c(t)#P
t

ti~1

u (s)E (s) ds . (18)

The vector-values functions c(t) and u (t) have the following form:

c(t)"E (t
i~1

)#A
1
(t!t

i~1
)#A

2
(t!t

i~1
)2#O (t!t

i~1
)3, (19a)

u (t)"A (t)#B (x j
i
, t

i
), A

1
"E (t!t

i~1
)#b

m
xk
i~1

(xk
i~1

!x j
i
) , (19b, c)

A
2
"(b

m
/2)M(xk

i~1
)2#2xk

i~1
xR k
i~1

!x j
i
xk
i~1

N(t!t
i~1

)2. (19d)

In the above expressions, b
m

stands for a "nite upper bounds to the bounded function
B(x, t). Equation (18) is now recast as the following inequality by taking modulii (square
root of the inner product) of various terms appropriately:

DE (t) D)Dc (t) D#P
t

ti~1

Du (s)EE (s) D ds. (20)

The above inequation is now in a form for the application of Bellman}Grownwall lemma
(see reference [18]):

DE(t) D)Dc (t
i~1

) D expA P
t

ti~1

Du(s) DdsB#P
t

ti~1

cR (s) sgn(c(s))Aexp P
t

s

Du (q) dqBds , (21)
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where, in the above expression, sgn(.) stands for the usual signum function. Since
cR (s)+O(1), exponential of a bounded function is also of O(1) and c(t

i~1
) is O(t!t

i~1
), the

right-hand side of the above inequation is O(t!t
i~1

). Thus in the transient regime

DE (t) D)O(t!t
i~1

). (22)

Phase-independent regime: In contrast to the transient case, in the steady state the jet
jn
x(t)

of x (t) based on xk
i~1

tends to pass through xk
i
as n is made inde"nitely large. As noted

earlier, this is because of the uniqueness of the non-linear #ow irrespective of the chosen
initial conditions. In other words, it means that

lim
n?=

jn
x(t)/xk

i~1
" lim

n?=
jn
x(t)/xk

t .
(23)

Thus, for t
i~1

(t)t
i
, the original trajectory, x (t), may be obtained by a back Ward Taylor

expansion based on the co-ordinate xk
i
as follows:

x(t)!xk
i
"xR k

i
(t!t

i
)#O(t!t

i
)2 . (24)

In this case, again, the error equation may be put in a form similar to equation (18) as

E (t)"c
s
(t)#P

t

ti

u (s)E (s) ds. (25)

Here the integration on the right-hand side has to be performed backwards in time. The
expression for c

s
(t) is

c
s
(t)"E(t

i~1
)#B

1
(t!t

i
)2#O(t!t

i
)3, (26)

B
1
"0)5b

m
xk
i
xR k
i
. (27)

The expression for u (s) remains the same as in equation (19b). The following inequality is
thus arrived at:

DE(t) D)Dc
s
(t) D#P

t

ti

Du (s)EE (s) D ds (28)

Now a straightforward application of the Bellman}Gronwall lemma, as in the previous
case, "nally leads to

DE(t) D)O(t!t
i
)2. (29)

5. HIGHER ORDER LTL PROCEDURES

Given the importance and frequent occurrences of the phase-independent and transient
solutions in non-linear dynamical system, it is important to derive other forms of LTL
schemes with capabilities to remain close to the original path from a given initial condition
as followed by the non-linear system itself, provided that the chosen time step is su$ciently
small. In what follows, a method for deriving consistently higher order and path-sensitive
LTL-based ODEs is outlined. Towards this, the set of n conditionally linearized equations
(5a) is augmented to twice its dimension and written as

xNG"[A(t
i
)#B(x

i
, t

i
)]xNQ #fQ (t) . (30)
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It is easy to see that the above system has an additional central eigenspace. The
non-uniqueness of solutions in central eigenspaces may be e!ectively exploited to introduce
the desired path sensitivity. However, instead of solving the linearized system in this form,
equation (30) is projected in the following form:

xNG"[K(x
i
, t

i
)]xN #q(t) , (31)

where

[K(x
i
, t

i
)]"[A(t

i
)#B (x

i
, t

i
)]T[A (t

i
)#B (x

i
. t

i
)], (32a)

q(t)"[A(t
i
)#B (x

i
, t

i
)] f (t)#fQ (t), (32b)

Solution of the system of equations (31) may be constructed in the same way as in equation
(8) provided it is written in the form of 2n "rst order equations as

XQ (t)"G(x
i
, t

i
)X(t)#g (t), (33)

where

[G(x
i
, t

i
)]"C

0 I
n]n

K (x
i
, t

i
) 0 D , g (t)"G

0

q (t)H . (34)

Over the semi-closed interval ¹
i
, the initial conditions for integrating equation (33) will be

(x
i~1

xR
i~1

"<(x
i~1

, t
i~1

)N. In equations (34), I
n]n

stands for an n]n identity matrix and 0,
for a zero matrix of the same order. One therefore observes that the augmented LTL system
(33), henceforth referred to as the "rst level LTL system, starts from the section R

i~1
with

the correct slope of the original state variables, x (t). Thus, the conditionally linearized state
variables, xN (t), corresponding to the system in equation (5a) which is henceforth called the
zeroth-level LTL system, obviously simulate the non-linear #ow better. In precisely the
same way as for the derivation of the "rst-level LTL system, even higher levels of LTL
systems may be consistently derived for higher and higher accuracy in the phase-dependent
and/or transient regimes. For example, if one constructs the second-level LTL system,
consisting of 3n conditionally linearized "rst order ODEs, then the initial conditions to this
system, valid over ¹

i
will be Mx

i~1
, xR

i~1
, xK

i~1
N, where

xK
i~1

"D
x/xi~1

M<(x, t)NxR
i~1

. (35)

In the above identity, D
x/xi~1

(<) stands for the Jacobian operator on the non-linear vector
"eld computed at x"x

i~1
.

An error analysis similar to that presented in section 4 may be repeated for di!erent
higher levels of LTL systems with no change in the de"nition of the error function as in
equation (14). Considering, for instance, the "rst-level LTL approach, the non-linear
dynamical system (1) is once di!erentiated to yield

xK"[AQ (t)#AT(t)A(t)]x#[A(t)B (x, t)#A(t)D
x
Q(x, t)#D

x
Q(x, t)B (x, t)]x

#[A(t)#D
x
Q(x, t)] f (t)#fQ (t). (36)

Now de"ning an augmented error vector function EK (t)"ME(t) EQ (t)NT3R2n , one may
readily derive a set of 2n "rst order equations for EK . A local estimate of EK (t) over the interval
¹

i
using Grownwall's lemma (as in section 4) again leads to EK (t))O(h

i
) . This immediately

implies that the desired error vector E (t))O(h2
i
) in the phase-dependent or transient



LOCAL LINEARIZATION PRINCIPLE 663
regime. Consequently, for an n-level LTL system, one may readily show that E(t))O(hn`1
i

)
locally in the phase-dependent regime. Of course, it needs to be noted here that this
improved accuracy is obtainable only with a considerably higher computational cost.

6. ILLUSTRATIVE EXAMPLES

The LTL principles outlined so far will now be illustrated with a few examples of
well-known non-linear systems, widely referred in the literature. The "rst example is that of
the single-degree-of-freedom (s.d.o.f.) hardening Du$ng (HD) oscillator, representing the
single-modal bending vibrations of a beam with geometric non-linearity (see, for example,
the monograph by Yu [19]) and governed by the following second order non-linear ODE:

xK#2ne
1
xR #4n2e

2
(1#x2)x"4n2e

3
cos(2nt). (37)

For s.d.o.f. oscillators, it is more convenient to apply the LTL procedure to the second order
ODEs directly instead of reducing them to a couple of "rst order ODEs. Thus, for the HD
oscillator, the conditionally linearized equation over the interval ¹

i
and with initial

conditions Mx
i~1

, xR
i~1

N is written down as

xK#2ne
1
xR #4n2e

2
b
1
x"4n2e

3
cos(2nt) b

i
"1#x2

i
. (38a, b)

The two eigenvalues associated with the auxiliary part of equation (38a) are

j(i)
1,2

"nM!e
1
$J(e2

1
!4e

2
b
i
)N . (39)

Depending on the value of the argument within the square root, the eigenvalues may be
either be real or complex conjugates. For all practical purposes, however, one has
0(e

1
@1, e

2
'e

1
, b

i
*1, thereby ensuring that 4e

2
b
i
'e2

1
. This in turn implies that the

eigenvalues are complex conjugates and are

j(i)
1,2

"!ne
i
$ja

i
(b

i
), a

i
(b

i
)"nJ4e

2
b
i
!e2

1
. (40)

It is noted that in the above equation j"J!1. The complete solution of the conditionally
linear equation (38a) may now be written as

xN (t)"exp(!ne
1
(t!t

i~1
)) (C(i)

1
cos(a

i
t)#C(i)

2
sin(a

i
t))#p

i
(t), (41a)

C(i)
1
"(E

2
D

1
!E

1
D

2
)/(E

2
F
1
!E

1
F
2
), C(i)

2
"(F

2
D

1
!F

1
D

2
)/(F

2
E
1
!F

1
E
2
), (41b, c)

F
1
"cos(a

i
t
i~1

), F
2
"!ne

1
cos(a

i
t
i~1

)!a
i
sin(a

i
t
i~1

) , (41d, e)

D
1
"xN

i~1
!p

i
(t
i~1

), D
2
"xNQ

i~1
!pR

i
(t
i~1

) , (41f, g)

E
1
"sin(a

i
t
i~1

), E
2
"!ne

1
sin(a

i
t
i~1

)#a
i
cos(a

i
t
i~1

) . (41h, i)

In equation (41a), p
i
(t) denotes the conditionally particular solution and the rest of the terms

on the right-hand side denote the conditionally complementary solution of the linearized
equation. The particular part of the solution is given by

p
i
(t)"

e
3
(e
2
b
i
!1) cos(2nt)#e

1
e
3
sin (2nt)

(e
2
b
i
!1)2#e2

1

"A
p
cos(2nt)#B

p
sin(2nt). (42)
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Now, deriving the expression for xN (t), it is simple to "nd out analytical expressions for xNQ (t)
and xNG (t) in terms of the unknown parameter b

i
. Substitution of these expressions in the

original non-linear equation (37) for the HD oscillator at t"t
i
"nally results in

a transcendental algebraic equation in b
i
and hence x

i
. This completes the exercise of

deriving the zeroth order LTL system for the HD oscillator.
For a more general implementation of the LTL procedures for higher-dimensional

dynamical systems, attention is now turned on the second example which is extensively
studied, three dimensional and autonomous Lorenz system (see reference [20] and the
important monograph by Sparrow [21]). The non-linear equations are

xR
1
"A(x

2
!x

1
), xR

2
"x

1
(R!x

3
)!x

2
, zR"x

1
x
2
!Bx

3
. (43)

The Lorenz system is probably the simplest example of a non-linear hydrodynamic system
describing Rayleigh}Benard convection and is the "rst known system to be chaotic.
De"ning the three-dimensional state vector X"(x

1
x
2

x
3
)T, the corresponding linearized

vector XM "(xN
1

xN
2

xN
3
)T and restricting attention, as before, on the semi-closed (time)

interval ¹
i
, a zeroth-level LTL system (non-unique) may be constructed as

XMQ "[C(X
i
)]XM , (44)

where the conditionally constant 3]3 coe$cient matrix C(X
i
) may be formed as

[C(X
i
)]"

!A A 0

R !1 !x
1, i

x
2,i

0 !B

. (45)

The conditional solution of the linearized system at t"t
i
is

XM (t
i
)"[M][D][M]~1X

i~1
. (46)

In equation (46), [D]"diag[expMh
i

j
1,i

j
2,i

j
3,i

)N] is the 3]3 diagonal matrix depending
on the conditional eigenvalues, which may be found directly from the cubic characteristic
equation

j3
j,i
#aj2

j,i
#bj

j,1
#c"0, j"1, 2, 3, (47)

where

a"1#A#B, b"A (1#B!R)#B, c"A[B(1!R)#x
1,i

x
2,i

]. (48)

The three roots of equation (46) are available in the closed form [22]. Towards this, the
following transformation is "rst e!ected:

j
j,i
"jM

j,i
!b/3. (49)

This results in

jM 3
j,i
#pjM

j,i
#q"0. (50)
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Letting r"(p/3)3#(q/2)2, the three roots, for the case when only one of them is real, are

jM
1,i

"u#v, jM
2,i

"!0)5(u#v)#(J3/2)(u!v) j, jM
3,i

"!0)5(u#v)!(J3/2)(u!v) j,

(51a)

u"3J!0)5q#Jr , v"3J!0)5q!Jr . (51b)

It is known that the above roots will be all real for r)0 and one real (positive) with the
other two complex conjugates for r'0. It may be noted here that conditional matrix of
eigenvectors, [M], in equation (46) are functions of the vector XM

i
"X

i
and may be explicitly

constructed only when the initial guess for this unknown vector is provided. Now,
di!erentiation of equation (46) once at t"t

i
yields

XMQ
i
"[M][DQ ]

t/ti
[M]~1X

i~1
, (52)

since XM
i~1

"X
i~1

. Thus, the desired non-linear algebraic equations in X
i

are readily
derived by substituting equation (52) in the given non-linear system of ODEs (43) at t"t

i
.

These three algebraic equations may be written in a vector form as

[M(X
i
)][DQ (X

i
)]

t/ti
[M(X

i
)]~1![C(X

i
)]X

i
"0. (53)

It may be noted that the process of deriving the conditional eigenvalues j
i
(X

i
) and the

associated matrix [M(X
i
)] of conditional eigenvectors is rather involved, especially for

a large m.d.o.f. dynamical system and the required non-linear vector function (as in the LHS
of equation (53)) may only be formed implicitly in terms of the unknown solution X

i
starting

with a guess value. In the present study, a globally convergent non-linear equation solver
based on line searches and backtracking along the Newton directions (see reference [7]) has
been adopted for "nding the desired roots at successive time instants.

Simpler forms of the zeroth-level LTL systems may be developed for the Lorenz system in
case certain constraints on the response are imposed. One such conditionally uncoupled
and the simplest possible zeroth-level LTL system is given by

xNQ
1
"b

1
xN
1
, xNQ

2
"b

2
xN
2
, xNQ

3
"b

3
xN
3
. (54)

The local solutions of the above set of ODEs are

xN
j, i
"x

j, i~1
exp(b

1
(t!t

i~1
)) , j"1, 2, 3. (55)

Clearly, using this form of LTL and given a three-dimensional initial condition vector
Mx

j,0
D j"1, 2, 3N, the constraint on the locally linearized #ows is that any element in

resulting solution vectors MxN
j, i

D j"1, 2, 3; i"1, 2,2N cannot change its sign (from positive
to negative and vice versa) from that of the corresponding element in the initial condition
vector. While this is a serious restriction for a typical chaotic orbit of the Lorenz system,
a large class of limit sets including "xed points for the Lorenz system should be readily
detectable using the LTL system (54). Finally, three non-linear algebraic equations in terms
of the three unknown coe$cients, b

1
, b

2
, b

3
, valid over ¹

i
may be readily found by

substituting the linear solutions (55) in the non-linear ODEs (43). These non-linear
equations are

b
1
x
1, i~1

exp(b
1
h
i
)!A(x

2,i~1
exp(b

2
h
i
)!x

1, i~1
exp(b

1
h
i
))"0, (56a)

b
2
x
2, i~1

exp(b
2
h
i
)!x

1,i~1
exp(b

1
h
i
) (R!x

3, i~1
exp(b

3
h
i
))#x

2, i~1
exp(b

2
h
i
), (56b)

b
3
x
3, i~1

exp(b
3
h
i
)!x

1,i~1
exp(b

1
h
i
)x

2, i~1
exp(b

2
h
i
)#Bx

3, i~1
exp(b

3
h
i
) . (56c)

To start with, a good initial guess vector for Mb
1

b
2

b
3
NT will be M0 0 0NT.
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Example of the simplest ,rst-level ¸¹¸ system: The simplest possible "rst-level LTL
system for the Lorenz oscillator may be constructed as a set of three conditionally
uncoupled second order linear ODEs, given by

xNG
1
!b2

1
xN
1
"0, xNG

2
!b2

2
xN
2
"0, xNG

3
!b2

3
xN
3
"0. (57)

The above form for the vector "eld has been so chosen that the eigenvalues are real for real
b
j
, j"1, 2, 3. The general solution of the conditionally linear system over ¹

i
is written as

xN
j
(t)"c

2j~1
exp (b

j
(t!t

i~1
))#c

2j
exp(!b

j
(t!t

i~1
)), j"1, 2, 3, (58)

where the arbitrary constants of integration are evaluated as

c
2j~1

"x
j, i~1

, c
2j
"xR

j, i~1
if b

j
"0,

c
2j~1

"0)5Axj, i~1
#

xR
j, i~1
b
j
B , c

2j
"0)5Axj, i~1

!

xR
j,i~1
b
j
B if b

j
O0. (59)

In the above equation, subscript j indexes the state variables while the other subscript
i indexes the successive time instants. It may be noted that the uncoupled system of
equations (57) could also have been so constructed as to have purely imaginary roots so that
the solutions (58) are expressible in sine and cosine functions. However, from the solutions
(58) it is evident that each uncoupled conditionally linear system in equation (57) has
a uni-dimensional stable and unstable manifolds. One is therefore assured that locally
unstable solutions (as for a chaotic orbit) in the original system are adequately simulated via
the linearized system, presently adopted. The non-linear algebraic equations in terms of
b
j
, j"1, 2, 3 may be formed, as usual, by substituting equation (58) in the original

dynamical system (43) at t"t
i
. For b

j
O0, j"1, 2, 3, these transcendental equations are

b
1
c
1
exp(b

1
h
i
)!b

1
c
2
exp(!b

1
h
i
)!A[c

3
exp(b

2
h
i
)#c

4
exp(!b

2
h
i
)

!c
1
exp(b

1
h
i
)!c

2
exp(!b

1
h
i
)]"0, (60a)

b
2
c
3
exp(b

2
h
i
)!b

2
c
4
exp(!b

2
h
i
)!(c

1
exp(b

1
h
i
)#c

2
exp(!b

1
h
i
))

(R!c
5
exp(b

3
h
i
)!c

6
exp(!b

3
h
i
))!B (c

3
exp(b

2
h
i
)#c

4
exp(!b

2
h
i
))"0, (60b)

b
3
c
5
exp(b

3
h
i
)!b

3
c
6
exp(!b

3
h
i
)!(c

1
exp(b

1
h
i
)#c

2
exp(!b

1
h
i
))

(c
3
exp(b

2
h
i
)#c

4
exp(!b

2
h
i
))#B (c

5
exp(b

3
h
i
)#c

6
exp(!b

3
h
i
))"0. (60c)

Similar developments regarding derivations of higher-level LTL systems for the HD
oscillator, as in equation (37), are also possible. A possible (but not the only one) "rst-level
LTL system for the HD oscillator may thus be conceived of as follows. Equation (37) is "rst
di!erentiated with respect to t to yield

x>>>#2ne
1
xK#4n2e

2
(3x2#1)xR "!8n3e

3
sin(2nt). (61)

The form of equation (61) is suggestive of the following "rst-level LTL system:

x6>>>#2ne
1
x6>>>#4n2e

2
bx60 "!8n3e

3
sin(2nt), (62)
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where the conditional constant b, valid over the interval ¹
i
, is related to x(t

i
)"x

i
via the

identity

b"3x2
i
#1. (63)

The conditionally linearized third order ODE, as given by equation (62) has got
a one-dimensional central manifold corresponding to the zero eigenvalue. Over the interval
¹

i
, the local initial conditions to equation (62) are (x

i~1
, xR

i~1
, xK

i~1
). It is essential to

observe that xK
i~1

should be expressed in terms of x
i~1

and xR
i~1

using the given non-linear
ODE (37). The rest of the derivations follow precisely the same steps as in the previous
illustrations and are not repeated here.

7. NUMERICAL RESULTS

The numerical results presented here correspond to those obtained via the applications of
zeroth- and "rst-level LTL methods, as explained in the previous section, to HD and
Lorenz oscillators. In all the presentations to follow, the time-step size, h

i
, for integration

has been made constant for all i. To begin with, the DH oscillator is taken up. In the absence
of any external forcing ad damping, i.e., e

3
"e

2
"0, the oscillator is time-invariant

Hamiltonian and has only one "xed point (x, xR )"(0, 0) which is the centre. Thus, any
non-zero initial condition corresponds to a distinct closed curve S1, topologically
equivalent to a circle. One such orbit, obtained via the zeroth-level LTL system, is shown in
Figure 3 and compared with the orbit obtained using a sixth order Runge}Kutta scheme
(RKGS). In case viscous damping is introduced without any external forcing
(e
2
'0, e

3
"0), the erstwhile centre becomes a stable sink and the phase-space volume

exponentially converge to zero. Evolution of one such trajectory, again obtained via zeroth
Figure 3. An unforced and undamped orbit of the HD oscillator, e
1
"0)0, e

2
"1)0, e

3
"0)0, h"0)01:

**, RKGS; ))))), zeroth-level LTL.



Figure 4. A viscously damped unforced orbit of the HD oscillator, e
1
"0)0, e

2
"1)0, e

3
"0)0, h"0)01:

**, RKGS; ))))), zeroth-level LTL.

Figure 5. A forced elliptic 1-periodic orbit of the HD oscillator, e
1
"0)25, e

2
"1)0, e

3
"0)1, h"0)01:

**, RKGS; ))))), zeroth-level LTL.
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order LTL and RKGS schemes, is shown in Figure 4. If a &small', non-zero, sinusoidal
external forcing term is now added ( De

3
D@1), the sink at (0, 0) undergoes a Hopf bifurcation

to be an elliptic 1-periodic orbit, whose vibrating frequency is the same as that of the
external force. Such an 1-periodic orbit, bearing strong resemblance of shape with the



Figure 6. A dumb-bell shaped, almost symmetric 1-periodic orbit of the HD oscillator, e
1
"0)25, e

2
"1)0,

e
3
"1)5, h"0)01: **, RKGS; ))))), zeroth-level LTL.
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1-periodic orbit of a linear system under a sinusoidal excitation, is presently referred to as
a small 1-periodic orbit. In Figure 5, one such small 1-periodic orbit is shown. It is
interesting to note that while the trajectory (in time) of the orbit in Figure 3 is phase
dependent, those corresponding to the orbits in Figures 4 and 5 are not. In all these cases,
however, comparisons between the zeroth-level LTL and RKGS methods remain quite
good. With increased values of the normalized forcing amplitude parameter, e

3
, the size of

the 1-periodic orbit goes on increasing till it loses the elliptic shape to assume
a dumb-bell-shaped structure, as shown in Figure 6. Further increases in e

3
destroy the

symmetry of these orbits and a couple of such unsymmetric periodic orbits are shown in
Figures 7 and 8, both obtained using the zeroth-level LTL method. As seen from Figure
7(b), the orbit as plotted in Figure 7(a) is weakly phase dependent with a very small
time-varying phase angle between two trajectories evolving with di!erent initial conditions.
The orbit of Figure 8, on the other hand, appears to be strictly phase independent (see
Figure 8(b)). On an even more increases in e

3
, the orbit, as projected on the phase plane,

crosses itself even while remaining periodic with the external frequency. Due to such
self-intersections, the enclosed region in the phase plane no longer remains simply
connected. A typical such phase plane projection, again produced by the zeroth-level LTL
and compared, as usual, against a sixth order RKGS, is shown in Figure 9(a). As shown in
Figure 9(b), the orbit is seen to be phase independent and hence the di!erence in the
projected solutions on the phase plane via LTL and RKGS may be attributed to an error
accumulation in the latter. Still higher values of e

3
again produces self-intersecting periodic

orbits in the phase plane, where the knotted areas enclosed by these intersections increase
(Figure 10(a)). Incidentally, all these periodic orbits reported so far for e

3
'0 have been

found to be phase independent. In Figure 10(b), for instance, time evolutions of two such
trajectories, corresponding to the orbit in Figure 10(a) and starting with two di!erent initial
conditions, are reported. The phase independence is clearly observed and thus it is expected



Figure 7. (a) An unsymmetric 1-periodic orbit of the HD oscillator, e
1
"0)25, e

2
"1)0, e

3
"4)0, h"0)005:

**, RKGS; ))))), zeroth-level LTL. (b) Weak phase dependence of time histories.
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that the zeroth-level LTL produces a more accurate orbit than RKGS. Chaotic orbits for
the HD oscillator may be observed for very high values of the forcing amplitude parameter,
e
3
. Since a chaotic orbit is very sensitively phase dependent, the zeroth-level LTL may be in

error especially if the parameters are chosen near the stability boundaries of some other
kind of solutions. One such strange attractor for the HD oscillator, obtained using RKGS,
is shown in Figure 11. The parameter, e

3
, has been so chosen as to be close to the boundary

where the periodic orbits of the type shown in Figure 10(a) loses stability. In this case, the
zeroth-level LTL works to the extent of predicting a strange attractor, though of a little
distorted shape, as shown in Figure 12(a) with h"0)001. With a still reduced step size of
h"0)0005, the zeroth-level LTL yields the correct shape as reported in Figure 12(b). The
"rst-level LTL, on the other hand, works quite well with h"0)001 and produces an
attractor (shown in Figure 13) similar to the one in Figure 11.



Figure 8. (a) An unsymmetric 1-periodic orbit of the HD oscillator, e
1
"0)25, e

2
"1)0, e

3
"6)0, h"0)005:

**, RKGS; ))))), zeroth-level LTL. (b) Phase independence of time histories.
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To describe the numerical results for the Lorenz system, the notations for the state
variables x

1
, x

2
, x

3
will be conveniently replaced by x, y and z respectively. Unlike the HD

system, the Lorenz oscillator is autonomous. A similarity with the HD oscillator, however,
lies in that it is also dissipative having a negative divergence of !(A#B#1) for positive
A and B. Here the point (0, 0, 0) remains a stable "xed point for 0(r(1. A bifurcation
occurs at R"1 where the point (0, 0, 0) loses stability and two new stable "xed points are
born. The co-ordinates of these "xed points are given by (Jb(r!1), Jb (r!1), r!1) and
(!Jb(r!1),!Jb (r!1), r!1). Time histories of one such orbit approaching the "xed
point with all positive coordinates is shown in Figure 14 along with a comparison with
RKGS. It is seen that the path traced by the zeroth-level LTL almost always remains closer
to the "xed point than the one traced by RKGS. It is clear that while applying the
zeroth-level LTL procedure to such phase-independent solutions, relatively higher



Figure 9. (a) An unsymmetric, self-intersecting periodic orbit of the HD oscillator, e
1
"0)1, e

2
"1)0, e

3
"9)0,

h"0)005: **, RKGS; ))))), zeroth-level LTL. (b) Phase independence of time histories.
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time-step sizes may be chosen. In the present case, the time step has been uniformly chosen
to be 0)1. It is known that in the range 24)06(R(24)74, in addition to the two stable "xed
points as mentioned above, a strange attractor also co-exists. In Figure 15(a), a typical
trajectory, attracted by one of these two "xed points and produced using the zeroth-level
LTL, is shown for R"24)10. It may be seen that the value of R has been chosen close to the
left boundary of the interval 24)06(R(24)74. It has once again been observe that only
a distorted strange attractor is obtainable with the use of zeroth-level LTL (equation (44)
only) for this value of R. The "rst-level LTL, however, remains relatively accurate, as is
shown in Figure 15(b). For R'24)74, the two "xed points lose their stability and only the
strange attractor exists. As a "nal check on the zeroth-level LTL as applied to
phase-independent solutions, a trajectory corresponding to R"24)73 is shown in Figure
16. The initial condition for this trajectory has been so chosen that it is attracted by the "xed



Figure 10. (a) A typical unsymmetric, self-intersecting periodic orbit of the HD oscillator preceding chaos,
e
1
"0)25, e

2
"1)0, e

3
"25)0, h"0)005:**, RKGS; ))))), zeroth-level LTL; (b). Phase independence of the orbit of

Figure 10(a): **, x (0)"0, dx(0)/dt"0; ))))) x(0)"0, dx(0)/dt"1)0.
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point with all positive co-ordinates. It has been observed that starting from t"0, the
trajectory goes within a neighbourhood with a radius of the order of 10~08 at the end of
t"20. In fact, for choices of parameters su$ciently away from the stability boundaries of
other solutions, the zeroth-level LTL (equation (44) only) produces the strange attractors
fairly accurately. One such strange attractor for R"40 is shown in Figure 17.



Figure 11. A strange attractor of the HD oscillator via RKGS, e
1
"0)25, e

2
"1)0, e

3
"41)0, h"0)001.
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8. DISCUSSION AND CONCLUSIONS

A new local linearization procedure, called the locally transversal linearization (LTL), for
analyses and simulations of non-linear ODEs (posed as initial value problems) is outlined in
this study. Put in a nutshell, given a non-linear dynamical system and relevant initial
conditions, the LTL method strives to "nd out a set of conditionally linear dynamical
systems, each having its validity over a chosen time interval. To be precise, given a time
interval and the known state vector (initial condition) at the beginning of the interval, the
corresponding conditionally linear system may be constructed in such a way as to
transversally intersect the non-linear trajectory at the end of the interval. The conditional
linearity of these derived dynamical systems stems from the fact that the desired solution
vector itself enters the equations as parameters. The postulated condition of transversal
intersection between the original and linearized trajectories at the right end of the chosen
time interval leads to a system of non-linear algebraic (transcendental) equations in terms of
these unknown parameters or the solution vector. Thus, the LTL procedure essentially
attempts to break up a given non-linear dynamical system into a correct Poincare map over
the given time step. While this map is exact modulo the #oating-point error in the
phase-dependent regime, errors do creep in if the solution is sought in the phase-dependent
regime. A theoretical error analysis based on Bellman}Grownwall lemma suggests an error
upper bound of the order of the chosen time step during the transient regime. Such a bound
points to the possibility of undesirable inaccuracies in the phase-independent cases,
especially for cases where the parameters are chosen close to the stability boundaries. One
way to avoid such inaccuracies is to construct higher-level LTL systems, where additional
initial conditions in terms of the derivatives of the original vector "eld are incorporated for
constructing the locally linearized orbit. In this way, it becomes possible to introduce a path
sensitivity in the LTL system. In the present study, limited results presented only for a few



Figure 12. (a) An inaccurate shape of the strange attractor of Figure 11 via zeroth-level LTL, h"0)001; (b) an
accurate shape of the strange attractor with h"0)0005.
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"rst-level LTL systems indeed point to an improved numerical accuracy. The procedure to
construct zeroth- and higher-level LTL systems is non-unique and this particular feature
may be well exploited to construct conditionally uncoupled LTL systems with very simple
forms. It is worth noting here that the procedures outlined in this paper to derive the LTL
systems for the Lorenz oscillator may be adapted to a general m.d.o.f. non-linear dynamical
system with hardly any further modi"cations.

The conditional linearization achieved via the principles of LTL may be construed either
as a #ow or a map. Either way, the analytical nature of the #ow or the di!eomorphism may
be exploited to achieve a lot more than is done presently. For example, the basic concept of
LTL may as well be made applicable to a large class of non-linear boundary value
problems, governed by non-linear ODEs and of immense use in static and dynamic



Figure 13. The strange attractor of Figure 11 via first-level LTL.

Figure 14. A trajectory approaching a stable "xed point of the Lorenz system, A"10, B"8/3, R"1)4, h"0)1:
**, zeroth-level LTL; ......, RKGS.
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Figure 15 (a) A trajectory approaching a stable "xed point of the Lorenz system, A"10, B"8/3, R"24)1,
h"0)1; (b) A strange attractor of the Lorenz system via "rst-level LTL (parameters as in Figure 15(a), except that
h"0)001).
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problems of structural mechanics. Moreover, the same principles may be extended a little to
treat stochastic ODEs. This may shed some light on questions regarding optimizations of
certain reliability measures. Questions regarding the extensions of LTL principles for
dynamical systems with various kinds of discontinuities in the vector "elds also remain
more or less unresolved at this stage.



Figure 16. A trajectory approaching a stable "xed point of the Lorenz system, A"10, B"8/3, R"24)73,
h"0)1.

Figure 17. A typical strange attractor of the Lorenz system via zeroth-level LTL, A"10, B"8/3, R"40)0,
h"0)001.
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